Books


  1. [B]. M. Tan, X.-Z. Huang, and F. Lin, Analog IC Design with Low-Dropout Regulators, Science Press, 2012 (Chinese Translation).

Journal Papers

(3xJSSC, 4xTCASI, 2xTCASII, 2xOE, 1xTIT, 1xJLT, 1xTVLSI)
  1. [J]. M. Tan, R. W. Yeung, S.-T. Ho, and N. Cai, “A unified framework for linear network codes,” IEEE Trans. Inf. Theory (TIT), vol. 57, no. 1, pp. 416-423, Jan. 2012.
  2. [J]. M. Tan and W.-H. Ki, “A cascode Miller-compensated three-stage amplifier with local impedance attenuation for optimized complex-pole control,” IEEE J. Solid-State Circuits (JSSC), vol. 50, no. 2, pp. 440–449, Feb. 2015. (Top accessed JSSC paper, ranked 2nd in Feb. 2015)
  3. [J]. M. Tan and W.-H. Ki, “An efficiency-enhanced hybrid supply modulator with single-capacitor current-integration control,” IEEE J. Solid-State Circuits (JSSC), vol. 51, no. 2, pp. 533–542, Feb. 2016.
  4. [J]. M. Tan and W.-H. Ki, “ A 100MHz hybrid supply modulator with ripple-current-based PWM control ,” IEEE J. Solid-State Circuits (JSSC), vol. 52, no. 2, pp. 569–578, Feb. 2017.
  5. [J]. Chao Yang, Kaixuan Ye, M. Tan*, “ A 0.5-V output-capacitor-free low dropout regulator with 30-dB PSRR at 10-kHz,” IEEE Trans. Circuits Syst. II Exp. Briefs (TCAS-II), vol. 67, no. 10, pp. 1785–1789, Nov. 2020.
  6. [J]. 谭旻*, 明达, 汪志城, “从光子集成迈向光电融合集成回路:以微环波长锁定为例,” 微纳电子与智能制造, pp.32-47, 2019(3).
  7. [J]. Z. Xie, K. Ye, K. X. Wang, Q. Cheng, and M. Tan*, “A time-division-multiplexed clocked-analog low-dropout regulator,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. 68, no. 3, pp. 1366–1376, Jan. 2021.
  8. [J]. M. Tan* et al., “Towards electronic-photonic-converged thermo-optic feedback tuning,” J. Semicond., vol. 42, no. 2, p. 23104, 2021.
  9. [J]. M. Tan*, Y. Wang, K. X. Wang*, Y. Yu, and X. Zhang, “Circuit-level convergence of electronics and photonics: basic concepts and recent advances,” Front. Optoelectron., vol. 15, no. 1, pp. 1-17, 2022.
  10. [J]. Siyuan Zhang, K. X. Wang, and M. Tan*, “An eight-channel switching-linear hybrid dynamic regulator with dual-supply LDOs for thermo-optic tuning,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. 69, no. 8, pp. 3428 - 3437, May 2022.
  11. [J]. Yaowen Tu and M. Tan*, “ A three-stage amplifier with cascode Miller compensation and buffered asymmetric dual path for driving large capacitive loads,” IEEE Trans. Circuits Syst. II Exp. Briefs (TCAS-II), vol. 69, no. 11, pp. 4198–4202, 2022.
  12. [J]. Zhicheng Wang, Da Ming, Yuhang Wang, Ciyuan Qiu, and M. Tan*, “ Resolving the scalability challenge of wavelength locking for multiple micro-rings via pipelined time-division-multiplexing control,” Opt. Express (OE), vol. 30, no. 14, pp. 24984-24994, 2022.
  13. [J]. Zhicheng Wang, Da Ming, Yuhang Wang, Ken X. Wang, Xi Xiao, Xinliang Zhang and M. Tan*, “ An electronic-photonic converged adaptive-tuning-step pipelined time-division-multiplexing control scheme for fast and scalable wavelength locking of micro-rings,” J. Light. Technol. (JLT), vol. 40, no. 16, pp. 5622 - 5630, 2022.
  14. [J]. M. Tan*, Jiang Xu* et al., “ Co-packaged optics (CPO): status, challenges, and solutions,” Front. Optoelectron., 16, 1 (2023).
  15. [J]. Tianchi Ye, Kaixuan Ye, Ziying Xie and M. Tan*, “A four-channel TDM clocked-analog LDO using a shared compensation block for thermo-optic tuning,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. 71, no. 3, pp. 1050-1060, May 2024.
  16. [J]. Da Ming, Yuhang Wang, Zhicheng Wang, Ken Xingze Wang, Ciyuan Qiu, and M. Tan*, “EPHIC models: general SPICE photonic models for closed-loop electronic-photonic co-simulation,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. 71, no. 4, pp. 1819 - 1831, 2024.
  17. [J]. Siyuan Zhang, Xiaolong Fan, Nuo Chen, Ciyuan Qiu, Xingsheng Wang, Ken Xingze Wang, Jing Xu, and M. Tan*, “ Compact photonic model based on coupled-mode theory for nonlinear interactions in electronic-photonic co-simulation,” Opt. Express (OE), vol. 32, no. 16, pp. 27599-27613, 2024.
  18. [J]. Ziliang Zhou and M. Tan*, “ A 20V pulse driver based on all-NMOS charge pump without reversion loss and overstress in 65nm standard CMOS technology,” IEEE Transactions on Very Large Scale Integration Systems (TVLSI), vol. 32, no. 10, pp. 1812 - 1821, 2024.
  19. [J]. Yuhang Wang, Da Ming, Zhicheng Wang, Ken Xingze Wang, Jing Xu and M. Tan*, “ A simple three-stage control scheme achieving interrupt-free integrated polarization stabilization,” Opt. Express (OE), vol. 32, no. 24, pp. 42750-42766, 2024.
  20. [J]. Yifan Zhang, M. Tan*, “ A buck converter with a fully-integrated current-mode Type-III compensator for envelop tracking of NB-IoT PAs,” In preparation for submisson.

Conference Papers


     
  1. [C]. M. Tan, R. W. Yeung, and S.-T. Ho, “A unified framework for linear network codes.” in 4th Workshop on Network Coding, Theory, and Applications, Hong Kong, China, Jan. 2008.
  2. [C]. M. Tan, “A zero-ESR stable adaptively biased low-dropout regulator in standard CMOS technology.” in IEEE 8th International Conference on ASIC, Changsha, China, pp. 1185-1188, Oct. 2009.
  3. [C]. M. Tan, D. Fu, and X. Huang, “A simple low power current sensor without using amplifier.” in 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, pp. 185-188, Jul. 2010.
  4. [C]. M. Tan and Q. Zhou, “An end-point prediction scheme with constant amplitude ramp signal suitable for high voltage applications.” in IEEE International Conference on Electron Devices and Solid-State Circuits, Hong Kong, China, Dec. 2010.
  5. [C]. Q. Zhou, M. Tan, and H. Li, “An LDO regulator with slew-rate enhancement circuit for low-power SoC.” in The 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, pp. 32-35, Apr. 2011.
  6. [C]. M. Tan, F. Liu, and F. Xiang, “A novel sub-1V bandgap reference in 0.18µm CMOS technology.” in IEEE International Conference on Anti-Counterfeiting, Security and Identification, Xiamen, China, pp. 180-183, Jun. 2011.
  7. [C]. M. Tan and Q. Zhou, “A two-stage amplifier with active Miller compensation.” in IEEE International Conference on Anti-Counterfeiting, Security and Identification, Xiamen, China, pp. 201-204, Jun. 2011.
  8. [C]. M. Tan and W.-H. Ki, “Current-mirror Miller compensation: An improved frequency compensation technique for two-stage amplifiers,” in International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), Hsinchu, Taiwan, pp. 312-315, Apr. 2013.
  9. [C]. M. Tan, C. Zhan, and W.-H. Ki, “A 4uA quiescent current output-capacitor-free low-dropout regulator with fully differential input stage,” in IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, pp. 2457-2460, Jun. 2014.
  10. [C]. M. Tan and W.-H. Ki, “Split-output miller-compensated two-stage amplifiers,” in IEEE International Conference of Electron Devices and Solid-state Circuits (EDSSC), Hong Kong, China, Jun. 2013.
  11. [C]. M. Tan and W.-H. Ki, “A fast transient output-capacitor-free low-dropout regulator with Class-AB control stage,” in IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Chengdu, China, Jun. 2014.
  12. [C]. M. Tan and W.-H. Ki, “A generic model for constructing three-stage amplifiers,” in IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Canada, May 2016.
  13. [C]. M. Tan and W.-H. Ki, “Stability Conditions for Hybrid Supply Modulators,” in IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, pp.1042-1045, Jun., 2017.
  14. [C]. Zhicheng Wang, Yu Yu, Xi Xiao, Miaofeng Li, Xuecheng Zou, Dingshan Gao, M. Tan*, “A time-division-multiplexing scheme for simultaneous wavelength locking of multiple silicon micro-rings”, in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), Florence, Italy, May, 2018
  15. [C]. Da Ming, Zhicheng Wang, Lining Zhang, M. Tan*, “A Verilog-A compact model for silicon micro-ring supporting fast thermal-electronic-photonic co-simulation”, in The 10th Int. Conf. on Information Optics and Photonics (CIOP), Beijing, China, Jul., 2018
  16. [C]. Kaixuan Ye, Ziyan Li, M. Tan*, “An area-efficient current quantization circuit inspired by digital low-dropout regulators”, in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Beijing, China, Jul., 2018
  17. [C]. Yifan Zhang, M. Tan*, “A buck converter using a fully-integrated current-mode dual-path type-III compensator for NB-IoT applications”, in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Beijing, China, Jul., 2018
  18. [C]. Yuhang Wang, Da Ming, M. Tan*, “Closed-loop thermal-electronic-photonic co-simulation for a novel Mach-Zehnder modulator bias control scheme ”, in The 11th Int. Conf. on Information Optics and Photonics (CIOP), Xi'an, China, Aug., 2019
  19. [C]. Kaixuan Ye, M. Tan*, “A dual-channel digital low dropout regulator with time-division-multiplexing scheme ”, in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Chengdu, China, Nov., 2019
  20. [C]. Kaixuan Ye, M. Tan*, “A four-channel clocked-analog time-division multiplexed LDO with shared compensation capacitor for thermal-optic phase tuning", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Nanjing, China, Nov., 2020
  21. [C]. Da Ming, Zhicheng Wang, Yuhang Wang, M. Tan*, “First demonstration of closed-loop PWM wavelength locking of a microring resonator in a monolithic photonic-BiCMOS platform", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Nanjing, China, Nov., 2020
  22. [C]. Q. Fu, M. Tan*, D. Xing, S. Shao, Z. Hu, and J. Feng, “A 57.2-Gb/s PAM4 driver for a segmented silicon-photonics Mach-Zehnder modulator with extinction ratio >9-dB in 45-nm RF-SOI CMOS technology,” in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), Daegu, Korea, May, 2021
  23. [C]. Zhicheng Wang, M. Tan*, “Fast wavelength locking of four mcro-ring resonators with hardware multiplexing”, in The 13th Int. Conf. on Information Optics and Photonics (CIOP), Xi'an, China, Jul., 2021
  24. [C]. S. Zhang, Z. Wang, and M. Tan*, “A dual-channel switching-linear series-connected hybrid dynamic power supply with dual-supply LDOs for thermo-optical tuning", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Zhuhai, China, Nov., 2021
  25. [C]. Tianchi Ye, Qixin Liu, Yiwei Zou, Li Jin, Junbo Feng, and M. Tan*, “Optical Phased Array with Reduced Phase Tuning Resolution", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Zhuhai, China, Nov., 2021
  26. [C]. Yuhang Wang, M. Tan*, “A dual-loop phase-reset-free endless polarization control scheme for electronic-photonic convergence”, in The 14th Int. Conf. on Information Optics and Photonics (CIOP), Xi'an, China, Jul., 2022
  27. [C]. Yue Yu, Da Ming, and M. Tan*, "A 0.58-pJ/bit 56-Gb/s PAM-4 optical receiver frontend with an envelope tracker for co-packaged optics in 40-nm CMOS" inProc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Xi'an, China, Oct., 2022

Invited Talks


  1. [T] “光电融合智算互连的关键技术研究进展 ”, 教育部中南地区高等学校电子电气基础课教学研究会第三十届学术年会,驻马店,11月2日,2024
  2. [T] “面向片间互连的光电融合微环收发系统关键技术研究进展 ”, 中国计算机学会第28届计算机工程与工艺学术年会暨第14届微处理器技术论坛,哈尔滨,10月12日,2024
  3. [T] “面向智算光互连的多维参数稳定性控制研究进展 ”, 2024全国电磁空间与泛在互联学术大会,成都,9月28日,2024
  4. [T] “面向智能计算的多通道光电融合互连研究进展 ”, 2024全球数字生态大会-光电合封CPO及异质集成前瞻技术展示交流会 ,杭州,9月27日,2024
  5. [T] “面向智算光互连的多参数稳定性控制研究: 趋势、挑战与进展 ”, 2024 硅基光电子国际论坛,重庆,8月2日,2024
  6. [T] “面向光电融合的紧凑建模与仿真技术最新进展 ”, 第五届光电子集成芯片立强论坛,深圳,7月15日,2024
  7. [T] “面向光电融合传感的紧凑建模与协同仿真 ”, 第59期“见微知著”培训课程:硅光子传感技术及应用,无锡,4月28日,2024
  8. [T] “EDA平台兼容闭环光电融合建模仿真: 挑战、方案及应用 ”, 第一届中国光学工程学会青年科学家大会,南京,4月15日,2024
  9. [T] “多参数光电融合闭环信息处理基础问题思考 ”, 第十八届全国信息光子发展战略研讨会,南开,4月13日,2024
  10. [T] “面向光电融合传感的紧凑建模与协同仿真 ”, 第七届国际智能工业大会-先进光学元器件智能制造研讨会,深圳,3月31日,2024
  11. [T] “智能化光电融合参数控制及其量子应用展望 ”, 量子计算芯片研讨会,珠海, 12月09日,2023
  12. [T] “EDA平台兼容光电融合建模仿真:挑战与进展 ”, 第四届光电子集成芯片立强大会,厦门, 8月12日,2023
  13. [T] “信息光电融合基础问题与光电融合ADC进展 ”, 中国物理学会2023年应用物理论坛系列会议(二)先进功能器件研讨会,哈尔滨, 7月18日,2023
  14. [T] “大规模信息光电融合发展极限及突破路径的一点思考 ”,第二届硅基光电子(硅光)创新论坛,杭州,5月7日,2023
  15. [T] “光电融合芯片:概念、挑战及进展”,2022 华为海思混合信号技术峰会 ,东莞松山湖,8月6日,2022
  16. [T] “光子器件紧凑建模及光电协同仿真”,第三届光电子集成芯片立强论坛,青岛,7月25日,2022
  17. [T] “信息光电融合:概念与挑战”,第三届光电子集成芯片立强论坛,青岛,7月25日,2022
  18. [T] “回路级光电融合集成:概念、挑战及进展”,光谷论坛(第二期):光电芯片、器件与集成,武汉,7月09日,2022
  19. [T] “神奇的光电融合芯片:不可靠电子和光子器件组成的可靠系统”,华中科技大学物理学院,武汉,4月15日,2022
  20. [T]“信息视角的光电融合芯片:概念、挑战与最新进展”,新型纳米光电信息材料与器件湖南省重点实验室年会,长沙,1月25日,2022
  21. [T]“光子集成与集成电路的回路级融合:信息科学的视角", 武汉光电国家研究中心青年学术午餐会,武汉,11月19日,2021
  22. [T] “光电融合集成回路:原理、进展及其数据中心潜在应用”,华为武研大讲坛,武汉,10月20日,2021
  23. [T] “借鉴集成电路发展光电融合:概念、挑战、方案及进展”,第一届硅基光电子创新论坛,兰州,9月30日,2021
  24. [T] “光电融合集成回路及其柔性光电潜在应用”,钱塘科技创新中心学术交流,杭州,6月28日,2021
  25. [T] “面向医疗应用的光电融合芯片”,光电子学前沿系列研讨会之医疗光电子研讨会,华中科技大学,武汉,6月26日,2021
  26. [T] “Circuit-Level Convergence of Electronics and Photonics: Basics and Recent Advances”,2020 IEEE国际集成电路技术与应用学术会议(ICTA2020),南京,11月25日,2020
  27. [T] “From Photonic Integration to Electronic-Photonic Heterogeneously-converging IC (EPHIC)”,OPTICS Workshop at DATE 2020,France,2020
  28. [T] “迈向光电融合集成回路的途径-集成电路的视角”,第十三届信息光电子发展战略研讨会,北京,12月28日,2019
  29. [T] “光电融合集成回路:挑战和进展”,南方科技大学,深圳,11月22日,2019
  30. [T] “从光子集成迈向光电融合集成回路:以微环波长锁定为例”,第三届微纳光学暨第四届微波光子学技术及应用研讨会,南京,8月25日,2019
  31. [T] “后摩尔时代的光电融合:回路设计和仿真的视角”,重庆联合微电子中心,重庆,7月9日,2019
  32. [T] “从功率集成电路到光电融合回路:基于片上反馈的视角”,大连理工大学,大连,7月3日,2019
  33. [T] “后摩尔时代的光电融合:回路和系统的视角”,北京电子学会,北京,6月24日,20119
  34. [T] “通往后摩尔时代的光电融合:闭环控制的演进”,华中科技大学学术前沿青年团队学术论坛,武汉,12月25日,2018
  35. [T] “新兴交叉学科研究和教学的实践与思考-以功率电子芯片为例”,教育部中南地区高等学校电子电气基础课教学研究会, 荆州, 8月20日,2018